Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Age Ageing ; 53(Supplement_2): ii47-ii59, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38745492

RESUMEN

Hippocampal neurogenesis (HN) occurs throughout the life course and is important for memory and mood. Declining with age, HN plays a pivotal role in cognitive decline (CD), dementia, and late-life depression, such that altered HN could represent a neurobiological susceptibility to these conditions. Pertinently, dietary patterns (e.g., Mediterranean diet) and/or individual nutrients (e.g., vitamin D, omega 3) can modify HN, but also modify risk for CD, dementia, and depression. Therefore, the interaction between diet/nutrition and HN may alter risk trajectories for these ageing-related brain conditions. Using a subsample (n = 371) of the Three-City cohort-where older adults provided information on diet and blood biobanking at baseline and were assessed for CD, dementia, and depressive symptomatology across 12 years-we tested for interactions between food consumption, nutrient intake, and nutritional biomarker concentrations and neurogenesis-centred susceptibility status (defined by baseline readouts of hippocampal progenitor cell integrity, cell death, and differentiation) on CD, Alzheimer's disease (AD), vascular and other dementias (VoD), and depressive symptomatology, using multivariable-adjusted logistic regression models. Increased plasma lycopene concentrations (OR [95% CI] = 1.07 [1.01, 1.14]), higher red meat (OR [95% CI] = 1.10 [1.03, 1.19]), and lower poultry consumption (OR [95% CI] = 0.93 [0.87, 0.99]) were associated with an increased risk for AD in individuals with a neurogenesis-centred susceptibility. Increased vitamin D consumption (OR [95% CI] = 1.05 [1.01, 1.11]) and plasma γ-tocopherol concentrations (OR [95% CI] = 1.08 [1.01, 1.18]) were associated with increased risk for VoD and depressive symptomatology, respectively, but only in susceptible individuals. This research highlights an important role for diet/nutrition in modifying dementia and depression risk in individuals with a neurogenesis-centred susceptibility.


Asunto(s)
Disfunción Cognitiva , Demencia , Depresión , Hipocampo , Neurogénesis , Estado Nutricional , Humanos , Anciano , Masculino , Femenino , Depresión/psicología , Depresión/metabolismo , Depresión/sangre , Disfunción Cognitiva/sangre , Disfunción Cognitiva/psicología , Disfunción Cognitiva/epidemiología , Demencia/psicología , Demencia/epidemiología , Demencia/sangre , Demencia/etiología , Factores de Riesgo , Hipocampo/metabolismo , Envejecimiento/psicología , Anciano de 80 o más Años , Cognición , Factores de Edad , Dieta/efectos adversos , Envejecimiento Cognitivo/psicología , Biomarcadores/sangre
2.
J Med Life ; 17(1): 24-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38737662

RESUMEN

Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.


Asunto(s)
Aminoácidos , Péptidos , Aminoácidos/farmacología , Humanos , Péptidos/farmacología , Fármacos Neuroprotectores/farmacología , Animales
3.
Stem Cell Rev Rep ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519702

RESUMEN

BACKGROUND: Similar to induced pluripotent cells (iPSCs), induced neural stem cells (iNSCs) can be directly converted from human somatic cells such as dermal fibroblasts and peripheral blood monocytes. While previous studies have demonstrated the resemblance of iNSCs to neural stem cells derived from primary sources and embryonic stem cells, respectively, a comprehensive analysis of the correlation between iNSCs and their physiological counterparts remained to be investigated. METHODS: Nowadays, single-cell sequencing technologies provide unique opportunities for in-depth cellular benchmarking of complex cell populations. Our study involves the comprehensive profiling of converted human iNSCs at a single-cell transcriptomic level, alongside conventional methods, like flow cytometry and immunofluorescence stainings. RESULTS: Our results show that the iNSC conversion yields a homogeneous cell population expressing bona fide neural stem cell markers. Extracting transcriptomic signatures from published single cell transcriptomic atlas data and comparison to the iNSC transcriptome reveals resemblance to embryonic neuroepithelial cells of early neurodevelopmental stages observed in vivo at 5 weeks of development. CONCLUSION: Our data underscore the physiological relevance of directly converted iNSCs, making them a valuable in vitro system for modeling human central nervous system development and establishing translational applications in cell therapy and compound screening.

4.
Heliyon ; 10(2): e24753, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38304771

RESUMEN

Background: Neurotrophic activity constitutes a crucial factor in the recovery from neurological injuries and is impaired in neurodegenerative disorders. Preclinical studies of neurotrophic factors to improve outcome of neurodegenerative diseases have yielded promising results. However, due to the complexity of these therapies, the clinical translation of this approach was so far not successful and more feasible treatments with neurotrophic activity may be promising alternatives. Therefore, highly sensitive and robust assays for compound screening are required. New method: Nerve growth factor is known to induce Neurofilament-L (NF-L) expression in a rat pheochromocytoma cell line (PC12 cells) during early neuronal differentiation. We generated and characterized an enhanced green fluorescent protein (EGFP)-NF-L reporter PC12 cell line for the development of a cell-based assay (designated Neurofilament-L Bioassay) that allows straightforward quantification of early neuronal differentiation based on NF-L expression. Results: Using Cerebrolysin® as a role model for a pharmacological compound that stimulates neurotrophic activity in the central nervous system, the Neurofilament-L Bioassay was proved to be a robust, specific, and reproducible method. Comparison with existing methods: It was already shown that NF-L expression correlates with neurite outgrowth in PC12 cells. Currently, quantification of neurite outgrowth is the most commonly used method to evaluate neuronal differentiation in PC12 cells, an approach that is time-consuming and of high variability. Conclusions: This work describes the development of an EGFP-NF-L reporter PC12 cell-based assay as a robust and reproducible tool for "high throughput" compound screening for neurotrophic activity.

5.
Mol Nutr Food Res ; : e2300271, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37876144

RESUMEN

SCOPE: Evidence on the Mediterranean diet (MD) and age-related cognitive decline (CD) is still inconclusive partly due to self-reported dietary assessment. The aim of the current study is to develop an MD- metabolomic score (MDMS) and investigate its association with CD in community-dwelling older adults. METHODS AND RESULTS: This study includes participants from the Three-City Study from the Bordeaux (n = 418) and Dijon (n = 422) cohorts who are free of dementia at baseline. Repeated measures of cognition over 12 years are collected. An MDMS is designed based on serum biomarkers related to MD key food groups and using a targeted metabolomics platform. Associations with CD are investigated through conditional logistic regression (matched on age, sex, and education level) in both sample sets. The MDMS is found to be inversely associated with CD (odds ratio [OR] [95% confidence interval (CI)] = 0.90 [0.80-1.00]; p = 0.048) in the Bordeaux (discovery) cohort. Results are comparable in the Dijon (validation) cohort, with a trend toward significance (OR [95% CI] = 0.91 [0.83-1.01]; p = 0.084). CONCLUSIONS: A greater adherence to the MD, here assessed by a serum MDMS, is associated with lower odds of CD in older adults.

6.
PLoS One ; 18(10): e0291946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824474

RESUMEN

Identification and quantitative segmentation of individual blood vessels in mice visualized with preclinical imaging techniques is a tedious, manual or semiautomated task that can require weeks of reviewing hundreds of levels of individual data sets. Preclinical imaging, such as micro-magnetic resonance imaging (µMRI) can produce tomographic datasets of murine vasculature across length scales and organs, which is of outmost importance to study tumor progression, angiogenesis, or vascular risk factors for diseases such as Alzheimer's. Training a neural network capable of accurate segmentation results requires a sufficiently large amount of labelled data, which takes a long time to compile. Recently, several reasonably automated approaches have emerged in the preclinical context but still require significant manual input and are less accurate than the deep learning approach presented in this paper-quantified by the Dice score. In this work, the implementation of a shallow, three-dimensional U-Net architecture for the segmentation of vessels in murine brains is presented, which is (1) open-source, (2) can be achieved with a small dataset (in this work only 8 µMRI imaging stacks of mouse brains were available), and (3) requires only a small subset of labelled training data. The presented model is evaluated together with two post-processing methodologies using a cross-validation, which results in an average Dice score of 61.34% in its best setup. The results show, that the methodology is able to detect blood vessels faster and more reliably compared to state-of-the-art vesselness filters with an average Dice score of 43.88% for the used dataset.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Animales , Ratones , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
7.
Front Aging Neurosci ; 15: 1140708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600518

RESUMEN

Introduction: Aging is in general associated with a decline in cognitive functions. Looking more closely, there is a huge heterogeneity in the extent of cognitive (dys-)abilities in the aged population. It ranges from the population of resistant, resilient, cognitively unimpaired individuals to patients with severe forms of dementias. Besides the known genetic, environmental and life style factors that shape the cognitive (dys-)abilities in aging, the underlying molecular mechanisms and signals related to cognitive heterogeneity are completely unknown. One putative mechanism underlying cognitive heterogeneity might be neuroinflammation, exerted through microglia, the brain's innate immune cells, as neuroinflammation is central to brain aging and neurodegenerative diseases. Recently, leukotrienes (LTs), i.e., small lipid mediators of inflammation produced by microglia along aging and neurodegeneration, got in the focus of geroscience as they might determine cognitive dysfunctions in aging. Methods: Here, we analyzed the brain's expression of key components of the LT synthesis pathway, i.e., the expression of 5-lipoxygenase (5-Lox), the key enzyme in LT production, and 5-lipoxygenase-activating protein (FLAP) in young and aged rats. More specifically, we used a cohort of rats, which, although grown up and housed under identical conditions, developed into aged cognitively unimpaired and aged cognitively impaired traits. Results: Expression of 5-Lox was increased within the brain of aged rats with the highest levels detected in cognitively impaired animals. The number of microglia cells was higher in the aged compared to the young brains with, again, the highest numbers of 5-Lox expressing microglia in the aged cognitively impaired rats. Remarkably, lower cognitive scores in the aged rats associated with higher numbers of 5-Lox positive microglia in the animals. Similar data were obtained for FLAP, at least in the cortex. Our data indicate elevated levels of the LT system in the brain of cognitively impaired animals. Discussion: We conclude that 5-Lox expressing microglia potentially contribute to the age-related cognitive decline in the brain, while low levels of the LT system might indicate and foster higher cognitive functions and eventually cognitive reserve and resilience in aging.

8.
Front Mol Biosci ; 10: 1196083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457829

RESUMEN

Introduction: Alzheimer's disease (AD) and aging are associated with platelet hyperactivity. However, the mechanisms underlying abnormal platelet function in AD and aging are yet poorly understood. Methods: To explore the molecular profile of AD and aged platelets, we investigated platelet activation (i.e., CD62P expression), proteome and transcriptome in AD patients, non-demented elderly, and young individuals as controls. Results: AD, aged and young individuals showed similar levels of platelet activation based on CD62P expression. However, AD and aged individuals had a proteomic signature suggestive of increased platelet activation compared with young controls. Transcriptomic profiling suggested the dysregulation of proteolytic machinery involved in regulating platelet function, particularly the ubiquitin-proteasome system in AD and autophagy in aging. The functional implication of these transcriptomic alterations remains unclear and requires further investigation. Discussion: Our data strengthen the evidence of enhanced platelet activation in aging and provide a first glimpse of the platelet transcriptomic changes occurring in AD.

9.
Front Physiol ; 14: 1151495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143930

RESUMEN

Introduction: Pericytes (PCs) are specialized cells located abluminal of endothelial cells on capillaries, fulfilling numerous important functions. Their potential involvement in wound healing and scar formation is achieving increasing attention since years. Thus, many studies investigated the participation of PCs following brain and spinal cord (SC) injury, however, lacking in-depth analysis of lesioned optic nerve (ON) tissue. Further, due to the lack of a unique PC marker and uniform definition of PCs, contradicting results are published. Methods: In the present study the inducible PDGFRß-P2A-CreERT2-tdTomato lineage tracing reporter mouse was used to investigate the participation and trans-differentiation of endogenous PC-derived cells in an ON crush (ONC) injury model, analyzing five different post lesion time points up to 8 weeks post lesion. Results: PC-specific labeling of the reporter was evaluated and confirmed in the unlesioned ON of the reporter mouse. After ONC, we detected PC-derived tdTomato+ cells in the lesion, whereof the majority is not associated with vascular structures. The number of PC-derived tdTomato+ cells within the lesion increased over time, accounting for 60-90% of all PDGFRß+ cells in the lesion. The presence of PDGFRß+tdTomato- cells in the ON scar suggests the existence of fibrotic cell subpopulations of different origins. Discussion: Our results clearly demonstrate the presence of non-vascular associated tdTomato+ cells in the lesion core, indicating the participation of PC-derived cells in fibrotic scar formation following ONC. Thus, these PC-derived cells represent promising target cells for therapeutic treatment strategies to modulate fibrotic scar formation to improve axonal regeneration.

10.
Aging (Albany NY) ; 15(3): 630-649, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36734880

RESUMEN

In Alzheimer's disease (AD), platelets become dysfunctional and might contribute to amyloid beta deposition. Here, we depleted platelets in one-year-old APP Swedish PS1 dE9 (APP-PS1) transgenic mice for five days, using intraperitoneal injections of an anti-CD42b antibody, and assessed changes in cerebral amyloidosis, plaque-associated neuritic dystrophy and gliosis. In APP-PS1 female mice, platelet depletion shifted amyloid plaque size distribution towards bigger plaques and increased neuritic dystrophy in the hippocampus. In platelet-depleted females, plaque-associated Iba1+ microglia had lower amounts of fibrillar amyloid beta cargo and GFAP+ astrocytic processes showed a higher overlap with thioflavin S+ amyloid plaques. In contrast to the popular hypothesis that platelets foster plaque pathology, our data suggest that platelets might limit plaque growth and attenuate plaque-related neuritic dystrophy at advanced stages of amyloid plaque pathology in APP-PS1 female mice. Whether the changes in amyloid plaque pathology are due to a direct effect on amyloid beta deposition or are a consequence of altered glial function needs to be further elucidated.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Femenino , Animales , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Placa Amiloide/patología , Ratones Transgénicos , Modelos Animales de Enfermedad
11.
J Neurotrauma ; 40(9-10): 999-1006, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36200629

RESUMEN

The use of biomarkers in spinal cord injury (SCI) research has evolved rapidly in recent years whereby most studies focused on the acute post-injury phase. Since SCI is characterized by persisting neurological impairments, the question arises whether blood biomarkers remain altered during the subacute post-injury time. Sample collection in the subacute phase might provide a better insight in the ongoing SCI specific molecular mechanism with fewer confounding factors compared with the acute phase where, amongst other complications, individuals receive a substantial amount of medication. This study aimed to determine if the temporal dynamics of serum biomarkers of neurodegeneration differ between individuals depending on their extent of neurological recovery in the transition phase between acute and chronic SCI. We performed a secondary analysis of biomarkers in patients with SCI (n = 41) who were treated at a level I trauma center in Germany. Patients with cervical or thoracic SCI regardless of injury severity were included. Blood samples were collected in the acute phase (1-4 days post-injury), and after 30 and 120 days post-injury. Serum protein levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NfL) were determined for each time-point of sample collection using R-Plex Assays (Meso Scale Discovery). Linear mixed models were used to evaluate the trajectory of GFAP and NfL over time. Fixed effects of time, neurological recovery, and injury severity, along with the recovery-by-time interaction, were included in models with random slopes and intercepts. GFAP levels increase during the first days after SCI and decrease in subacute to chronic stages. Notably, the trajectory of GFAP over time is significantly associated with the extent of neurological recovery during the transition from acute to chronic SCI with a steeper decline in individuals who recovered better. Serum levels of NfL continue to rise significantly until Day 30 followed by a decrease afterwards, independent of neurological recovery. The trajectory of serum GFAP levels qualifies as a prognostic biomarker for neurological recovery, and facilitates monitoring of disease progression in the sub-acute post-injury phase.


Asunto(s)
Filamentos Intermedios , Traumatismos de la Médula Espinal , Humanos , Proteína Ácida Fibrilar de la Glía , Biomarcadores , Proteínas de Neurofilamentos
12.
Nutrients ; 14(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36364950

RESUMEN

The gut microbiome is involved in nutrient metabolism and produces metabolites that, via the gut−brain axis, signal to the brain and influence cognition. Human studies have so far had limited success in identifying early metabolic alterations linked to cognitive aging, likely due to limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based cohort who had not been diagnosed with dementia at the time of blood sampling were included, and repeated measures of cognition over 12 subsequent years were collected. Using a targeted metabolomics platform, we identified 72 circulating gut-derived metabolites in a case−control study on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation). Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on metabolism and cognition deserves further investigation.


Asunto(s)
Eje Cerebro-Intestino , Disfunción Cognitiva , Humanos , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Disfunción Cognitiva/metabolismo , Metabolómica
13.
J Immunol ; 209(7): 1272-1285, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165202

RESUMEN

Peripheral immune cell infiltration into the brain is a prominent feature in aging and various neurodegenerative diseases such as Alzheimer's disease (AD). As AD progresses, CD8+ T cells infiltrate into the brain parenchyma, where they tightly associate with neurons and microglia. The functional properties of CD8+ T cells in the brain are largely unknown. To gain further insights into the putative functions of CD8+ T cells in the brain, we explored and compared the transcriptomic profile of CD8+ T cells isolated from the brain and blood of transgenic AD (APPswe/PSEN1dE9, line 85 [APP-PS1]) and age-matched wild-type (WT) mice. Brain CD8+ T cells of APP-PS1 and WT animals had similar transcriptomic profiles and substantially differed from blood circulating CD8+ T cells. The gene signature of brain CD8+ T cells identified them as tissue-resident memory (Trm) T cells. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the significantly upregulated genes revealed overrepresentation of biological processes involved in IFN-ß signaling and the response to viral infections. Furthermore, brain CD8+ T cells of APP-PS1 and aged WT mice showed similar differentially regulated genes as brain Trm CD8+ T cells in mouse models with acute virus infection, chronic parasite infection, and tumor growth. In conclusion, our profiling of brain CD8+ T cells suggests that in AD, these cells exhibit similar adaptive immune responses as in other inflammatory diseases of the CNS, potentially opening the door for immunotherapy in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Células T de Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética , Transcriptoma
14.
Pharmaceutics ; 14(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36145606

RESUMEN

The hematopoietic granulocyte-colony stimulating growth factor (G-CSF, filgrastim) is an approved drug in hematology and oncology. Filgrastim's potential in neurodegenerative disorders is gaining increasingly more attention, as preclinical and early clinical studies suggest it could be a promising treatment option. G-CSF has had a tremendous record as a safe drug for more than three decades; however, its effects upon the central nervous system (CNS) are still not fully understood. In contrast to conceptual long-term clinical application with lower dosing, our present pilot study intends to give a first insight into the molecular effects of a single subcutaneous (s.c.) high-dose G-CSF application upon different regions of the rodent brain. We analyzed mRNA-and in some instances-protein data of neurogenic and non-neurogenic differentiation markers in different regions of rat brains five days after G-CSF (1.3 mg/kg) or physiological saline. We found a continuous downregulation of several markers in most brain regions. Remarkably, cerebellum and hypothalamus showed an upregulation of different markers. In conclusion, our study reveals minor suppressive or stimulatory effects of a single exceptional high G-CSF dose upon neurogenic and non-neurogenic differentiation markers in relevant brain regions, excluding unregulated responses or unexpected patterns of marker expression.

15.
Mol Psychiatry ; 27(8): 3425-3440, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794184

RESUMEN

Environmental factors like diet have been linked to depression and/or relapse risk in later life. This could be partially driven by the food metabolome, which communicates with the brain via the circulatory system and interacts with hippocampal neurogenesis (HN), a form of brain plasticity implicated in depression aetiology. Despite the associations between HN, diet and depression, human data further substantiating this hypothesis are largely missing. Here, we used an in vitro model of HN to test the effects of serum samples from a longitudinal ageing cohort of 373 participants, with or without depressive symptomology. 1% participant serum was applied to human fetal hippocampal progenitor cells, and changes in HN markers were related to the occurrence of depressive symptoms across a 12-year period. Key nutritional, metabolomic and lipidomic biomarkers (extracted from participant plasma and serum) were subsequently tested for their ability to modulate HN. In our assay, we found that reduced cell death and increased neuronal differentiation were associated with later life depressive symptomatology. Additionally, we found impairments in neuronal cell morphology in cells treated with serum from participants experiencing recurrent depressive symptoms across the 12-year period. Interestingly, we found that increased neuronal differentiation was modulated by increased serum levels of metabolite butyrylcarnitine and decreased glycerophospholipid, PC35:1(16:0/19:1), levels - both of which are closely linked to diet - all in the context of depressive symptomology. These findings potentially suggest that diet and altered HN could subsequently shape the trajectory of late-life depressive symptomology.


Asunto(s)
Depresión , Neurogénesis , Humanos , Depresión/metabolismo , Estudios de Cohortes , Neurogénesis/fisiología , Hipocampo , Dieta , Envejecimiento
16.
J Neurotrauma ; 39(23-24): 1678-1686, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35607859

RESUMEN

Patients with spinal cord injury (SCI) frequently develop infections that may affect quality of life, be life-threatening, and impair their neurological recovery in the acute and subacute injury phases. Therefore, identifying patients with SCI at risk for developing infections in this stage is of utmost importance. We determined the systemic levels of immune cell populations, cytokines, chemokines, and growth factors in 81 patients with traumatic SCI at 4 weeks after injury and compared them with those of 26 age-matched healthy control subjects. Patients who developed infections between 4 and 16 weeks after injury exhibited higher numbers of neutrophils and eosinophils, as well as lower numbers of lymphocytes and eotaxin-1 (CCL11) levels. Accordingly, lasso logistic regression showed that incomplete lesions (American Spinal Injury Association Impairment Scale [AIS] C and D grades), the levels of eotaxin-1, and the number of lymphocytes, basophils, and monocytes are predictive of lower odds for infections. On the other hand, the number of neutrophils and eosinophils as well as, in a lesser extent, the levels of IP-10 (CXCL10), MCP-1 (CCL2), BDNF [brain-derived neurotrophic factor], and vascular endothelial growth factor [VEGF]-A, are predictors of increased susceptibility for developing infections. Overall, our results point to systemic immune disbalance after SCI as predictors of infection in a period when infections may greatly interfere with neurological and functional recovery and suggest new pathways and players to further explore novel therapeutic strategies.


Asunto(s)
Traumatismos de la Médula Espinal , Factor A de Crecimiento Endotelial Vascular , Humanos , Calidad de Vida , Recuperación de la Función , Eosinófilos , Médula Espinal
17.
Trials ; 23(1): 245, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365190

RESUMEN

BACKGROUND: The pathological mechanism in acute spinal cord injury (SCI) is dual sequential: the primary mechanical lesion and the secondary injury due to a cascade of biochemical and pathological changes initiated by the primary lesion. Therapeutic approaches have focused on modulating the mechanisms of secondary injury. Despite extensive efforts in the treatment of SCI, there is yet no causal, curative treatment approach available. Extracorporeal shock wave therapy (ESWT) has been successfully implemented in clinical use. Biological responses to therapeutic shock waves include altered metabolic activity of various cell types due to direct and indirect mechanotransduction leading to improved migration, proliferation, chemotaxis, modulation of the inflammatory response, angiogenesis, and neovascularization, thus inducing rather a regeneration than repair. The aim of this clinical study is to investigate the effect of ESWT in humans within the first 48 h after an acute traumatic SCI, with the objective to intervene in the secondary injury phase in order to reduce the extent of neuronal loss. METHODS: This two-arm three-stage adaptive, prospective, multi-center, randomized, blinded, placebo-controlled study has been initiated in July 2020, and a total of 82 patients with acute traumatic SCI will be recruited for the first stage in 15 participating hospitals as part of a two-armed three-stage adaptive trial design. The focused ESWT (energy flux density: 0.1-0.19 mJ/mm2, frequency: 2-5 Hz) is applied once at the level of the lesion, five segments above/below, and on the plantar surface of both feet within the first 48 h after trauma. The degree of improvement in motor and sensory function after 6 months post-injury is the primary endpoint of the study. Secondary endpoints include routine blood chemistry parameters, the degree of spasticity, the ability to walk, urological function, quality of life, and the independence in everyday life. DISCUSSION: The application of ESWT activates the nervous tissue regeneration involving a multitude of various biochemical and cellular events and leads to a decreased neuronal loss. ESWT might contribute to an improvement in the treatment of acute traumatic SCI in future clinical use. TRIAL REGISTRATION: ClinicalTrials.gov NCT04474106.


Asunto(s)
Tratamiento con Ondas de Choque Extracorpóreas , Traumatismos de la Médula Espinal , Método Doble Ciego , Humanos , Mecanotransducción Celular , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Sensación , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/terapia
18.
Biomolecules ; 12(3)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327537

RESUMEN

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are two common types of α-synucleinopathies and represent a high unmet medical need. Despite diverging clinical manifestations, both neurodegenerative diseases share several facets of their complex pathophysiology. Apart from α-synuclein aggregation, an impairment of mitochondrial functions, defective protein clearance systems and excessive inflammatory responses are consistently observed in the brains of PD as well as DLB patients. Leukotrienes are lipid mediators of inflammatory signaling traditionally known for their role in asthma. However, recent research advances highlight a possible contribution of leukotrienes, along with their rate-limiting synthesis enzyme 5-lipoxygenase, in the pathogenesis of central nervous system disorders. This review provides an overview of in vitro as well as in vivo studies, in summary suggesting that dysregulated leukotriene signaling is involved in the pathological processes underlying PD and DLB. In addition, we discuss how the leukotriene signaling pathway could serve as a future drug target for the therapy of PD and DLB.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Encéfalo/metabolismo , Humanos , Leucotrienos , Enfermedad de Parkinson/patología , Transducción de Señal , alfa-Sinucleína/metabolismo
19.
Pharmaceutics ; 14(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35057094

RESUMEN

The capability of the adult central nervous system to self-repair/regenerate was demonstrated repeatedly throughout the last decades but remains in debate. Reduced neurogenic niche activity paralleled by a profound neuronal loss represents fundamental hallmarks in the disease course of neurodegenerative disorders. We and others have demonstrated the endogenous TGFß system to represent a potential pathogenic participant in disease progression, of amyotrophic lateral sclerosis (ALS) in particular, by generating and promoting a disequilibrium of neurodegenerative and neuroregenerative processes. The novel human/primate specific LNA Gapmer Antisense Oligonucleotide "NVP-13", targeting TGFBR2, effectively reduced its expression and lowered TGFß signal transduction in vitro and in vivo, paralleled by boosting neurogenic niche activity in human neuronal progenitor cells and nonhuman primate central nervous system. Here, we investigated NVP-13 in vivo pharmacology, safety, and tolerability following repeated intrathecal injections in nonhuman primate cynomolgus monkeys for 13 weeks in a GLP-toxicology study approach. NVP-13 was administered intrathecally with 1, 2, or 4 mg NVP-13/animal within 3 months on days 1, 15, 29, 43, 57, 71, and 85 in the initial 13 weeks. We were able to demonstrate an excellent local and systemic tolerability, and no adverse events in physiological, hematological, clinical chemistry, and microscopic findings in female and male Cynomolgus Monkeys. Under the conditions of this study, the no observed adverse effect level (NOAEL) is at least 4 mg/animal NVP-13.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...